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Abstract

The increasing demand of applying machine learning tech-
nologies in various domains has driven the involvement of
complex machine learning models. To fulfill this demand, dis-
tributed machine learning has become the de facto standard
computing paradigm for model training. Machine-Learning-
as-a-Service (MLaaS) has also emerged as a solution provided
by cloud service providers to address this need. With MLaaS$,
customers can submit their models and training datasets
to the service providers, and leverage the existing cloud in-
frastructure for model training and inference. However, we
find that, for end users who require complex and accurate
machine learning models but only obtains moderate amount
of data, existing solutions are insufficient. The main issue is
the lack of support for dynamic deployment of distributed
machine learning tasks. To address this issue, we propose
a parameter server based framework, called dSyncPS, that
allows worker nodes to participate in training dynamically.
The key idea is that it separates parameter synchronization
from aggregation function in the parameter server nodes,
thus resulting in a delayed synchrony.
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1 Introduction

The past decade has witnessed the transformation of arti-
ficial intelligence (AI) and machine learning (ML). To deal
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with the ever increasing amount of data collected from var-
ious devices and sensors, more complex ML models have
been proposed and applied for this purpose. The Moore’s law,
the engine that powered the machine learning revolution,
has shown to be running out of its steam. Training a com-
plex model with a single machine has become increasingly
impossible. Thus, distributed computing has evolved into
the de facto standard for machine learning. Driven by this
demand, Machine-Learning-as-a-Service (MLaaS) emerges
as an imperative solution.

MLaaS is a collection of various cloud-based platforms
that use machine learning tools to provide machine learn-
ing solutions. These solutions typically include pre-built
ML algorithms, such as natural language processing (NLP)
and computer vision algorithms, ML management tools, ML
training, and ML deployment at scale. Particularly for ML
training, customers can submit their models and training
datasets to service providers and leverage the existing cloud
infrastructure for model training and inference. However,
we argue that the training should be deployed and executed
closed to the edge since most of the training data is collected
from end users and devices. In this work, we propose a frame-
work that extends distributed ML to the edge so that edge
devices with moderate data size may contribute to complex
model training,.

There are two main motivations for this work. First, the
current design of MLaaS can only benefit big data stake-
holders, but not individual end users. For example, an end
user may collect a moderate amount of data, and would
like to use the data to train a more complex and accurate
model to perform a specific task. In this case, the existing
MLaaS$ can only provide limited help due to the insufficient
data. If there are other end users with a similar demand,
their data can be pooled together to perform this training
task. Second, many edge servers have adequate bandwidth
for training ML tasks. Given that most of their currently de-
ployed applications are time-sensitive, it is unlikely that they
are computation-intensive at the same time. On the other
hand, it is expensive for end users to upload their data to a
centralized cloud. Based on the above discussion, we argue
that these non-critical ML training tasks should be executed
at the edge.

To achieve this goal, however, three keys challenges need
to be addressed. First, edge computing environment is more
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dynamic and unreliable compared to data center infrastruc-
tures. For example, unexpected traffic bursts can happen,
causing intermittent network congestion and training task
failures. Second, modern distributed ML platforms, such as
MXNet [5], Pytorch [13] and Tensorflow [3], do not support
dynamic participation of worker and server nodes during
training. Third, existing synchronization paradigms, bulk
synchronous parallel (BSP) [8] and Stale Synchronous Par-
allel (SSP) [9], cannot satisfy the running of a distributed
machine learning task at large scale. To overcome these
challenges, a peer-to-peer (P2P) based framework, such as
Ako [15], seems to be promising at first glance. However,
P2P based frameworks may fall short in several aspects. First
of all, training is performed in an asynchronous fashion in
these frameworks, which means that there is no synchro-
nization barrier of trained parameters. This would adversely
affect the global model convergence so that convergence is
either delayed or prevented. Secondly, system management,
such as tracking involved peer nodes, is expensive and also
error-prone. Such complex system management can also
lead to training failures. Finally, since scaling up the worker
nodes increases computation capacity, while scaling up the
server nodes increases system management complexity. In-
dependent scaling of worker nodes and server nodes might
be necessary at the edge.

Motivated by these observations, we propose a novel
framework, called dSyncPS, that is designed based on the pa-
rameter server architecture [10]. The key idea of this frame-
work is that it separates parameter synchronization from
aggregation function in the parameter server nodes, thus
resulting in a delayed synchrony. Specifically, we separate
the synchronization process into two independent phases:
local and global synchronization. Local synchronization is
performed among a small group of worker nodes that share
geolocation affinity. Global synchronization is performed
among all the participating parameter servers in a delayed
fashion. In our framework, local synchronization is dictated
by local parameter servers, and global synchronization is
achieved by utilizing a distributed storage system, such as
Amazon S3 [1]. More details will be discussed in Section 2
and Section 3.1.4. Additionally, we also develop a TCP-based
application protocol to facilitate this mechanism. The pro-
posed framework helps achieve two goals: (1) End users are
provided with the flexibility to determine when to join or
leave a ML training task, and (2) Non-critical distributed ML
tasks can be deployed and executed at a large scale.

Through evaluations, we show that dSyncPS can effectively
manage distributed training. It can also scale up with the
increasing number of participating worker nodes efficiently.
The rest of the paper is organized as following. We provide an
overview of the proposed system in Section 2. The detailed of
the system design are discussed in Section 3. Specifically, we
discuss the design of parameter servers in Section 3.1, and the
design of worker nodes in Section 3.2. The communication
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protocol formats and functions are specified in Section 3.3.
The evaluation results are shown and analyzed in Section 4.
We finally conclude our work in Section 6.

2 System Overview

System Components. There are three typical system archi-
tectures supporting the execution of distributed ML, param-
eter server (PS), peer-to-peer (P2P), and ring-Allreduce [4].
Our proposed framework, called dSyncPS, is built upon the
PS architecture for two reasons: 1. The parameter server
nodes of the PS architecture attributes to a central role in co-
ordination of participating worker nodes. 2. Management is
easier and less error-prone in PS architecture based systems.
Additionally, such an architecture aligns with the current
Edge computing paradigm.

The architecture of dSyncPSis shown in Figure 1b. dSyncPS
consists of four major components: the worker nodes, the
parameter server nodes, a custom-designed TCP-based proto-
col, and a distributed storage system. The worker and param-
eter server nodes work in similar ways to those in the current
PS architectures (shown in Figure 1a), where worker nodes
perform iterative training and parameter servers perform
parameter aggregations. But there are two key differences
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Figure 1. System architectures

(a) Current PS architecture

that separate two architectures.

First, in the current PS architecture design, parameters
are split by the key range among multiple server groups.
Thus a worker node needs to maintain connections with
each server in a group for synchronization. In the proposed
dSyncPS, we split the keys vertically along the worker dimen-
sion so that each worker node only maintains one connection
with an individual server node. This connection can be dy-
namically migrated to other server nodes in the same group
or a different group if needed, such as when a server node
goes offline. To facilitate dynamic migration, we develop a
TCP-based application protocol that is discussed in details
in Section 3.3. Second, the server nodes in the current PS ar-
chitecture integrate the two key functions, aggregation and
synchronization, with the Bulk-Synchronous Parallel (BSP)
mechanism. In BSP, aggregation cannot be done until the
server node receives updated parameters from all the worker
nodes. Alternatively, we propose to separate global synchro-
nization from aggregation in dSyncPS. Specifically, in local
aggregation period, a server node only performs synchro-
nized aggregation over a set of workers that are connected to
this server node. The size of this set is expected to be small.
While for the global aggregation, it is performed in a delayed



dSyncPS: Delayed Synchronization for Dynamic Deployment of Distributed Machine Learning

fashion among different server nodes via a distributed stor-
age system. Such a mechanism reduces the amount of time
needed for synchronization.

System Workflow. With these components, the workflow
of dSyncPS is shown in Figure 2. When a worker node first
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Figure 2. Workflow of dSyncPS

joins the network, it initiates a service request to the ser-
vice manager (step D), which is a component that handles
distributed machine learning services as part of the MLaaS
platform. Based on the location of the worker node, a nearby
server node is assigned as the primary parameter server (PPS)
that provides distributed training service for the worker (step
@). This can be done through DNS localization mechanisms.
For example, RFC 7871 proposes EDNS0-Client-Subnet (ECS)
which passes end-user subnet information through recursive
resolvers to authoritative DNS servers for localization [6].
For the training, worker first sends a request to the server
to obtain the current parameters of the model (step 3® and
@) since we assume that not all the worker nodes start the
training at the same time. Once the worker gets the initial
parameters, local computation begins (step (). At the end of
each iteration, the worker synchronizes its parameter values
with its PPS in a similar way as step ® and @. In step 3,
updated parameters are pushed to the server and the server
sends back aggregated parameters in step @. For the global
synchronization among different server nodes, it is done in
a delayed synchronous fashion via the distributed storage
system (step ®). Specifically, each server performs local ag-
gregation first and then the locally aggregated parameters
are written back to the storage. Such updates are exclusive
by utilizing locks. Detailed designs of each component are
discussed next.

’ Server |('-@-—>| Storage‘
®

3 Design and Implementation
3.1 Parameter Server

3.1.1 Server Architecture. The architecture of a param-
eter server node is shown in Figure 3. There are four main
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Figure 3. Architecture of parameter server
modules in each parameter server node: Dispatcher, dSync
Module, BSP module, and a Heartbeat Module. The dispatcher
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module is responsible for receiving various types of messages
from other nodes, and invoking the corresponding handler
functions. The details of the proposed protocol and message
types are discussed in Section 3.3. The dSync module initiates
the delayed synchronization to a distributed storage system.
The BSP module handles the synchronization among the
local worker nodes. The heartbeat module helps maintain
the liveness of other parameter server nodes in the system.

3.1.2 BSP Module. The core of a parameter server is an
Aggregation function. When the message dispatcher receives
parameter updates from a worker node, it invokes the aggre-
gation function to update the current parameters. The results
of this function are passed to the dSync module and the BSP
module for synchronization operations. Specifically, the BSP
module works follows a similar strategy to that of the current
BSP paradigm. It allows the local worker nodes to synchro-
nize after each training iteration. But the key difference is
that we introduce a timer mechanism in the proposed BSP
module. The purpose of this timer is to prevent worker from
waiting so a long time. Generally, the parameter server main-
tains a list of active worker nodes for synchronization. If the
parameter server does not receive the updated parameters
from a worker node until the timer fires off, the parameter
server continues without further waiting. By default, we set
this timer to be 120 seconds, but this can be adjusted by the
system operator. When a worker attempts a reconnection or
first joins the training, the worker sends a Worker Bonjour
message to the parameter server, which is handled by a func-
tion called Worker Bonjour. This function updates the list
of active worker nodes when a worker joins and leaves the
training.

3.1.3 Full-mesh Server Topology. On the other hand,
each parameter server also maintains a list of their peer
server nodes for global synchronization and load balancing
purposes. To check the liveness of their peers, a Heartbeat
function periodically sends heartbeat messages to the other
server nodes. More about heartbeat will be discussed in sec-
tion 3.1.7. When a server node first joins the system, it sends
a Server Bonjour message to one of the existing server nodes,
which we call designated contacting point (DCP), and is as-
signed via DNS redirection service. This request is processed
by the Server Bonjour function. This function returns a list of
active peer server nodes so that the new server can further
establish connections with these nodes. Eventually, all the
parameter servers form a full-mesh topology. If any of the
parameter servers fails, it can be detected by all the other
servers via the heartbeat messages.

3.1.4 dSync Module. The core function that implements
global synchronization is the dSync Module. This module
operates based on a hash table, called status table, that maps
all the server nodes to their corresponding status: ready or
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not ready. Note that the status table is also used to main-
tain the liveness of a server node. If a server node is not
detected alive, it is removed from this table. When the global
synchronization is initiated, this module copies the locally
synchronized parameter to the shared storage. Upon success,
the server node, for instance Sy, sends a Server Sync message
to all other peer nodes. Upon the receipt of this message,
each server node updates their status table by changing the
server status of Sy from not ready to ready. When the server
status of all the servers in the table become ready, one of the
servers performs the global aggregation while all others wait
for the operation to be complete. The server node can then
issue another request to the distributed storage system to get
the updated base parameters. Meanwhile, the server statuses
of all the servers in the table are reset to not ready. Since
this global synchronization is expensive, we cannot afford
to do this for every single iteration. Therefore, we define a
time interval, T, that determines the frequency of the global
synchronization. In other words, servers perform the global
synchronization after T iterations of local aggregations. Al-
though servers may drift apart and become out of sync, the
global synchronization enforces a barrier synchronization
among all the servers. For the newly joined servers, they are
forced to perform the first global synchronization upon the
receipt of SRV_SYNC message regardless of their current local
aggregation iterations. The details of this message will be
discussed in Section 3.3.

3.1.5 Asynchronous Joining of Server Nodes. A key
challenge with this pre-defined synchronization interval is
to handle the asynchronous joining of new server nodes. For
instance, a new server node might join 2 iterations after the
global synchronization. In this case, it would require all the
other server nodes to wait for 2 additional iterations in order
to achieve global synchronization. To solve this issue, we
introduce a mechanism that allows the global synchroniza-
tion to either advance or defer. Specifically, assume that all
the existing server nodes are about to perform the i*" global
synchronization, and receive the Server Bonjour message
from a new server node. Then one of the two things hap-
pens. Either the i*" global synchronization is deferred to the
next iteration, if it had not began. Or the (i + 1)** global
synchronization is advanced to the next iteration, if the i’ h
synchronization were going on or had finished.

3.1.6 Parameters Initialization. A server manages two
types of configuration files, which are shared current file and
local configuration file. The current file is shared among all
servers through the distributed storage, which contains the
up-to-date parameters obtained from the last global synchro-
nization. When a training network is created and initialized,
the current file can be fetched from a previous training. The
local configuration file is stored locally on each server, which
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contains the latest parameters from the last local synchro-
nization. Upon global synchronization or new server joining
the network, the local configuration file is overwritten by the
current file. The local configuration file is shared between
each server and their worker nodes, while the current file is
shared among all the servers via the shared storage.

3.1.7 Heartbeat. As mentioned in section 3.1.4, a heart-
beat module is designed to detect peer aliveness. Such a
module also exists in worker nodes. The heartbeat module
contains two critical parts: an initiator and a health monitor.
The heartbeat initiator broadcasts heartbeat message to all
connect peers periodically, while the monitor checks peer
connectivity. If one node, either server or worker node, is
not heard over within a predetermined time interval, it is
considered disconnected. As a result, the disconnected node
is removed from the status table maintained by its peers.

3.2 Worker Node

3.2.1 Worker Architecture. The design of a worker node
is mainly centered around its interactions with the parameter
server node and executions of model parameter updates.
The architecture of a worker node is shown in Figure 4.
Each worker has three main components: a BSP Module,

BSP Module |

Conn Manager

’
Bonjour Training

Load
Balancer
A

Parameter Server

Computation

Validation

Worker Node

Figure 4. Architecture of worker node

a Connection Manager Module and a Computation Module.
The BSP Module connects with that of the parameter server
BSP Module to synchronize local model parameters after
each iteration. The Computation Module implements the core
functions for the training purpose. The Connection Manager
is responsible for initiating connection with the parameter
server and load balancing.

3.2.2 Connection Manager. A worker node joins the
training by initiating a Worker Bonjour message to a pa-
rameter server that is obtained from the DNS services. In
the response of this message, the worker can obtain a com-
plete list of active parameter servers and a complete training
package. This package includes a training model, a copy of
the PPS’s local configuration file, training code, and a val-
idation code. The detailed discussions of this package are
in Section 3.3. During the operation of a worker node, if it
loses connection with its current PPS, the Connection Man-
ager provides a mechanism to automatically reconnect the
worker with a different parameter server. The new PPS is
selected from the complete list of parameter servers based
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on some load balancing metrics. After a new connection is
established, the worker node can resume its training based
on the new parameter file obtained from its new PPS. Given
a list of active parameter servers, a worker can also decide
to switch to a different server as their new PPS proactively.
The details of this load balancing mechanism are discussed
later.

3.2.3 Computation Module. This module includes two
key functions, the Training function and the Validation func-
tion. The Training function performs the typical forward and
backward propagation calculations in DNN models. Gener-
ally, a Validation function is used to validate the model on test
data, which is a subset of the data that does not overlap with
the training data, at each training epoch’s end by calculating
a validation score or accuracy. In our design, this function is
invoked at the end of each iteration for two purposes. First,
“bad” parameters that do not contribute to the learning of the
model significantly can be excluded temporarily from the
aggregation. For example, we can set a threshold, V;, on the
minimum validation score a worker node needs to achieve
after each training iteration. If the score is below V;, then
the BSP module does not send anything to the server and the
worker continues training. As the training progresses, the
validation score may increase and the accumulated training
parameters can be included in the local aggregation after
that.

The second purpose is to exclude poorly performed worker
nodes from the training network. Due to the device hetero-
geneity at the edge, different worker nodes can perform
diversely. If a worker node continuously (for at least N iter-
ations) calculates low validation scores, then it may benefit
the entire training network by excluding such nodes. In this
case, its PPS sends a termination message to close the connec-
tion with this worker node. By default, N; is set to be 10. It is
difficult to set a default value for V; since the score increases
as the training progresses. Alternatively, each worker node
keeps the current best score locally, and compares it with the
new validation score. If the new score wins, the current best
score is updated to the new score; Otherwise, the worker
continues to train.

3.2.4 Load Balancing. In most existing work, load bal-
ancing is performed on the server side and is transparent
to the clients. In our design, the worker nodes can initiate
the load balancing process by terminating its connection
with the current PPS and connecting to a new PPS. The ra-
tionales behind this design are threefold. First, it is difficult
to deploy a centralized load balancer that operates on the
server side given the distributed deployment of parameter
servers. Second, load balancing might cause interruption to
training services if it is scheduled in the middle of worker
nodes updating gradients to their PPS. Third, workers should
be given the flexibility to choose a better performed link. Ex-
isting load balancing mechanisms make decisions mainly
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Node evtType Description
SRV_BONJOUR Server bonjour messages
ALIVE Heartbeat messages

server | TRAINMF Transmit training and validation model to worker

nodes in response to Worker Bonjour message

BONJOUR_MDES Send initial training parameters to a worker node

SRV_SYNC Global synchronization ready messages

WRK_BONJOUR Worker bonjour messages

WRK_REQ_SRVS Worker request parameter server information

worker

WRK_UPDATE Worker send messages to update parameters

Table 1. Descriptions of different events

based on the server workload. In the distributed training
system, however, communication efficiency is the key. Thus,
workers should circumvent the congested links dynamically
and proactively.

To implement this specific mechanism, the worker nodes
need to obtain workload and latency related information
on all the active parameter servers. To this end, the pro-
posed framework include both passive and proactive mea-
surements. For the passive measurements, parameter servers
share their load average values with their peer server nodes
by carrying this information in their heartbeat messages. On
Linux, load average represents the overall system demand,
including CPU, disk, uninterruptible locks. Then, these val-
ues are shared with all the participating worker nodes upon
request. A worker node fetches the complete list of param-
eter servers and their information from its PPS by issuing
requests periodically after each worker BSP update by using
a WRK_REQ_SRVS message. PPS then respond with the load
average information of all active servers. For the proactive
measurements, a worker node sends probing packets to col-
lect Round-Trip Time (RTT) values from a set of parameter
servers whose load averages are below certain threshold.
Then, the worker node computes a metric, what we call
Workload-Latency Product, that is the product of the load
average and the RTT values. If the calculated metric value
is 20% lower than that of the current PPS, the worker node
switches to this new parameter server; Otherwise, it stays
with the current PPS. The intention is to prevent frequent
reconnections caused by network traffic load and instance
workload fluctuations.

3.3 Communication Protocol

3.3.1 Message Format. The format of the proposed com-
munication messages is shown in Figure 5.

struct protocol_t {
unsigned char preamble[PREAMBLE_SIZE];
unsigned char evtType;
String msgBody;
u_int32_t msgBodylLen;
unsigned char hashVal[SHA_DIGEST_LENGTHI;
u_int64_t ts;

Figure 5. Communication message format
In this data structure, the preamble specifies the message de-
limiter, which is a fixed string of size PREAMBLE_SIZE (8 bytes
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by default). Since our communication protocol is built on top
of TCP, and given that TCP is a stream-oriented protocol,
a delimiter is necessary for a receiving node to determine
the end of message in a data stream. The evtType represents
the type of a message. The specific types of message are
shown in Table 1. The msgBody contains the message data of
variable length and msgBodyLen shows the length of this mes-
sage. To guarantee message integrity, a 64-byte long SHA-1
hash value is included in hashval, where SHA_DIGEST_LENGTH
is 64 by default, and can be adjusted. The ts represents the
timestamp when this message is generated.

These messages can be classified into two groups based on
their audience groups. The server type of events are used
for the coordination of different parameter servers, and the
worker type of events are to dictate the interactions between
worker nodes and their parameter servers. Most of these
messages have been discussed in Section 3.1 and 3.2. Among
all, SRV_SYNC is the message that a parameter server sends to
all other server peers when it is ready for global synchroniza-
tion and when the synchronization is done. This message
includes an ID of the parameter server that performs the
update. Upon the receipt of this message, a server node up-
dates the entry that corresponds to this ID in its local status
table. The WRK_REQ_SRVS message is used by worker nodes
to initiate the load balancing process. Although alternative
synchronization algorithms, such as ring all-reduce, can be
applied to our system, it aims to optimize communication
bandwidth rather than delay. Therefore, it may not deliver
better performance than our proposed synchronization algo-
rithm.

3.3.2 Training Package. As mentioned in Section 3.2, a
worker node receives a training package from the parame-
ter server for initialization. The transmission of this pack-
age is achieved with two subsequent messages,TRAINMF and
BONJOUR_MDES. The initial parameters of the model are trans-
mitted with BONJOUR_MDES, and TRAINMF carries the serialized
training and validation codes. Since all the participating
worker nodes seek to train the same model, it is essential
that they get the model structure from the parameter servers.
This model can be a custom model or a pre-trained model.
It should be selected by the worker node who initiated the
training task. To share this model, we send the code snip-
pet that constructs the model structure with uniform APIs,
such as buildModelArchitecture(), to the the worker node.
In this way, the uniform APIs can be updated easily without
changing the other components of the execution.

Our framework is not specific to MXNet, it can be integrated
with Pytorch and Tensorflow as well. Considering that dif-
ferent worker nodes may support different learning libraries,
the worker nodes, when they first join the training network,
needs to send their capabilities to the parameter server. If
Pytorch is supported instead of MXNet, a code snippet that
is implemented with Pytorch library is sent to the worker
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node. Note that the buildModelArchitecture() API remains
the same regardless of the machine learning library. Simi-
larly, the training code and validation code also need to be
shared with the worker nodes so that the data processing
and calculation is consistent across all the worker nodes.
In this case, validate() is the uniform API implemented by
the parameter server to calculate validation scores. The gen-
eration of these code snippets should be simple given that
most of these computations are using standard APIs. All the
code snippets are serialized into byte streams for message
transmission, and deserialized upon receipt.

4 Evaluation

We evaluate dSyncPS from three aspects. First, we evaluate
the accuracy of converged models of nine workers, which are
managed by three parameter servers. Secondly, we inspect
the effectiveness of the load balancing mechanisms. Finally,
we also evaluate the scalability of dSyncPS by increasing the
number of participating worker nodes.

4.1 Experiment Setup

We evaluate our work with 15 bare metal machines of type
€220g5 on CloudLab [7]. They are equipped with two Intel
Xeon Silver 10-core CPUs, 192GB ECC DDR4-2666 mem-
ory, and 10Gb NICs. Among these machines, three of them
are used to execute parameter servers, while the remain-
ing nodes are used to run worker processes. All the tests
are conducted on Ubuntu 20.04 and MXNet 1.6.0. During
the execution of dSyncPS, a logger is activated to record
the post-aggregation and post-synchronization scores and
their timestamps. It also keeps track of all the load-balancing
events. To enable the synchronization of parameter servers,
we also leverage AWS S3 to maintain the synchronized pa-
rameters. In all the following experiments, dSyncPS trains
a LeNet model with the FashionMNIST dataset [2] with a
learning rate of 0.1, optimizer SGD, and loss function of Soft-
max Cross Entropy Loss. Additionally, all the worker nodes
are trained on the same data from the FashionMNIST dataset.
The frequency of global synchronization is set to three, which
means that the global synchronization happens every three
local aggregations.

4.2 Accuracy of Converged Model

In this experiment, we measure the post-aggregation scores
on the worker nodes and the post-synchronization scores on
the server nodes as the training accuracy. Post-aggregation
scores are calculated by validating the current model
over a test dataset after each local aggregation. Post-
synchornization scores are calculated in a similar way on the
server side after each global synchronization. The results are
shown in Figure 6 and Figure 7. Figure 6 shows the results of
post-aggregation scores on the worker nodes, and Figure 7
shows the post-synchronization scores on the server nodes.
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Figure 7. Post-synchronization scores

The two sub-figures represents two independent runs of the
same experiment (out of 16 runs), respectively. They repre-
sent the best and the worst cases in our experiments. In all
four figures, we linearly scale the x-axis by dividing each
time point by 5. In other words, the total training time should
range between 2k and 2.5k seconds. The initial validation
scores are about 0.78 because the workers are provided with
a reasonable set of initial parameters. We can observe that in
both cases, the training accuracy increases rapidly to about
0.9 within 500 seconds. Similar observations can be obtained
on the server side as well. The average accuracy of all ex-
periments is about 0.905. We also compare this result with
the scenario when the frequency of global training is set to
1. In that case, the convergence time will be approximately
reduced by half. Note that the training process relies heavily
on the validation function, thus a large mount of the training
time is consumed by validation.

4.3 Effectiveness of Load Balancing

We also evaluate the load balancing mechanism of dSyncPS
by examining the number of active worker nodes managed
by each server during the training. The results are shown
in Figure 8. In this experiment, we set up two different sce-
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Figure 8. Effectiveness of load balancing

narios. In the first scenario, all nine workers are assigned to

each parameter server in a round-robin fashion so that all

servers have equal workload initially. In the second scenario,
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we have ten worker nodes in total. Each of the first two
parameter servers is assigned with one worker node, and
the remaining eight worker nodes are assigned to the third
server. Then we compare the results of the balanced and
the imbalanced scenarios. In this figure, three different bars
represent the number of active works on each server, respec-
tively. The corresponding time values represent the points
when load balancing happens, i.e., one or more workers re-
connect themselves to a different server. For the balanced
scenario, we can see that the workloads of each server remain
almost balanced during training. For the imbalanced scenario,
workers eventually also attempt to connect to servers in a
load-balancing fashion. Note that the total number of work-
ers will decrease as their training converges and they leave
the network. The results suggest that our proposed load bal-
ancing mechanism works efficiently to distribute workloads
to parameter servers. In figure 8, the total count of active
worker is keep decreasing because workers may exit if no
better model could be discovered within the given training
iteration threshold.

4.4 Scalability of dSyncPS

In this group of experiments, we attempt to evaluate the scal-
ability of dSyncPS by incrementally increasing the number
of worker nodes in the system. Initially, all three parame-
ter servers are signed with one worker node each. Then we
increase the total number of worker nodes by two in each
experiment. We then compare the average local aggregation
time and the average global synchronization time of the pa-
rameter servers. The results are shown in Figure 9. In this

553 local aggregation time
global synchronization time

6 8
# of Active Workers

Figure 9. Scalability of dSyncPS

figure, each group of experiments has two bars, one repre-
senting the average local aggregation time and the other
representing the average global synchronization time. We
can see that both time increase slightly as more workers
are added into the system. But they are still manageable
by dSyncPS. The results suggest that dSyncPS can handle
the increasing number of worker nodes effectively. In prac-
tice, the capacity of parameter servers should also scale up
accordingly so that the servers are not overloaded.

5 Related Work

Many prior work adopt the parameter server based architec-
ture to build distributed machine learning frameworks. Ooi
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et al. developed SINGA, a deep learning framework that sup-
ports multiple partitioning and synchronization schemes. It
supports complex cluster topologies, such as one with multi-
ple server groups [12]. Zhang et al. proposed, Poseidon, that
implements a hybrid synchonization model: communication
is performed either between the parameter server and the
worker nodes or among the worker nodes in a peer-to-peer
fashion, depending on the model structures and the size of
the clusters [16]. Su et al. proposed a novel distributed train-
ing framework that performs different types of synchroniza-
tion for different model layers [14]. For example, ring-based
synchronization is used to update the large amount of pa-
rameters in CNN models, and All-Reduce synchronization is
used to update the frequently changed parameters in the last
layer. A similar approach has also been proposed by Li et al.,
a collection of empirical policies were derived to determine
how and when to use BSP and ASP synchronizations [11].
More recently, Zhou et al. proposed a Community-aware
Synchronous Parallel (CASP) mechanism by leveraging ad-
vanced actor-critic (A3C) based algorithm to intelligently
determine community configuration and fully improve the
synchronization performance [17].

6 Conclusion

In this paper, we propose to develop a parameter-server
based framework for dynamic deployment of distributed
machine learning tasks. To achieve this goal, we separate
the parameter synchronization from aggregation function
in the parameter server nodes so that synchronization is
performed in a delayed fashion. Specifically, we separate the
synchronization process into two independent phases: local
and global synchronization. In our framework, local synchro-
nization is dictated by local parameter servers, and global
synchronization is achieved via a distributed storage system.
Additionally, we also develop a TCP-based application proto-
col to facilitate this mechanism. From our evaluation results,
our proposed framework can perform training effectively
and efficiently.
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