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Abstract

The function approximators employed by traditional image-
based Deep Reinforcement Learning (DRL) algorithms usu-
ally lack a temporal learning component and instead focus
on learning the spatial component. We propose a technique,
Temporal Shift Reinforcement Learning (TSRL), wherein
both temporal, as well as spatial components are jointly
learned. Moreover, TSRL does not require additional param-
eters to perform temporal learning. We show that TSRL
outperforms the commonly used frame stacking heuristic
on all of the Atari environments we test on while beat-
ing the SOTA for all except one of them. This investiga-
tion has implications in the robotics as well as sequential
decision-making domains. Our code is available at - https:
//github.com/Deepakgthomas/TSM_RL
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1 Introduction

Developing Reinforcement Learning (RL) algorithms that
can make effective decisions using high dimensional obser-
vations such as images is quite challenging. In addition, it
consumes a lot of time and energy. In recent months re-
searchers have worked on developing sample efficient RL
plug and play algorithms, that can directly learn from pix-
els. Srinivas et al. incorporated Contrastive Learning, into
off-policy algorithms, to learn relevant features from image

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

EuroMLSys’22, April 5-8, 2022, RENNES, France

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9254-9/22/04.
https://doi.org/10.1145/3517207.3526968

based inputs. Laskin et al. investigated developing data effi-
cient and generalizable algorithms, by introducing a generic
data augmentation module for RL algorithms [10, 14, 16, 18].

While a lot of work has been devoted to extracting posi-
tional information from image inputs, very little investiga-
tion has been done on learning from temporal information.
Shang et al. performed experiments using DMControl ([20])
to highlight the importance of temporal information in RL.
They compared two Soft-Actor-Critic (SAC) RL algorithms,
wherein one had access to pose and temporal information
and the other only had access to pose. It was found that the
former algorithm swiftly learned the optimal policy, while
the latter failed to do so. Furthermore, a recurring heuris-
tic used by many papers is to stack sequential observations
together while inputting it to a neural network [12]. This
heuristic combines frames, without processing them and
therefore can be considered analogous to early fusion [9].
Recently, Shang et al. approached this as a video classifica-
tion problem. This is a lucid approach, as considering a DRL
state equivalent to a video will help improve the prediction
capabilities of the underlying neural network. Successful
video recognition architectures use late fusion where all
frames are processed, using neural networks, before they are
combined together [16], [10].

Moreover, a video stream consists of both spatial and tem-
poral aspects. The former contains information about the
video frame including objects and its surroundings, while
the movement of the frame and its associated objects can
be learned from the temporal portion [17]. While learning
the spatial aspect is enough for image recognition, video
recognition requires learning both spatial and temporal com-
ponents. Enabling agents to extract temporal information
from a given set of frames will result in the DRL agent making
better Q-value predictions and therefore result in improved
data efficiency. Furthermore, it will contribute to the agent
understanding the differences between seemingly similar
actions, such as opening and closing objects [11], [16].

There has been a plethora of work related to video recog-
nition using 3D and standard 2D CNNs. 3D CNNs have the
ability to simultaneously extract out spatial and temporal fea-
tures from videos. However, they are computationally costly,
which makes them hard to implement in real-time situations.
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Incorporating similar architectures with vision-based DRL
exacerbates this problem, as many applications require fast
predictions during training, and having latency is infeasible.
Furthermore, the extra parameters could make the model
more prone to overfitting without large amounts of data.
This once again poses a roadblock to the development of
sample efficient RL [5, 11, 21]. 2D CNNs, although relatively
efficient however fail to extract out temporal information
(17, 19].

Amiranashvili et al. [1] incorporated optical flow in their
RL algorithm, although their technique required state vari-
ables in addition to pixel observations during training. Mod-
eling temporal information in RL using simply pixel inputs
was investigated by [16], and it brought a new approach to
efficiently reducing sample complexity in RL. We intend to
further optimize this technique by leveraging recent work in
the field of video action prediction and therefore propose the
Temporal Shift Reinforcement Learning (TSRL) algorithm.

The contributions of our work are presented here:

1) We propose a plug and play architecture which works
with almost any generic vision-based DRL algorithm.

2) We augment a video recognition architecture [11] that
does not require any additional parameters to model tempo-
ral information in DRL.

2 Related Work
2.1 Latent Flow

Simonyan et al. investigated the use of optical flow tech-
niques to perform video classification and was able to achieve
SOTA performance by a significant amount over previous
work in video classification. They developed a dual-stream
architecture using ConvNets, consisting of spatial and tempo-
ral recognition components. The spatial stream was learned
using a pre-trained ConvNet, wherein each frame was sent
to the network as input. The input to the temporal stream
was stacked optical flow displacement fields generated from
consecutive frames. Movement among frames can be ob-
tained from optical flow fields, thereby eliminating the need
for the network to learn it. This technique achieved high
accuracies without requiring a lot of data. More importantly,
they established that training a temporal CNN using optical
flow was a drastically better technique compared to training
on a stacked bunch of images [9, 17]. The downside of this
algorithm is that it is computationally costly both during
inference and training and therefore cannot be combined
with RL algorithms [16].

2.2 Flow of Latents

Shang et al. looked for a computationally feasible technique
to integrate RL with optical flow. They were inspired by late
fusion techniques; wherein every frame was run through
a CNN before fusion was applied. Late fusion provides im-
proved performance with fewer parameters and also allows
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multi-modal data [6, 8]. They presented a structured late
fusion architecture, wherein each image frame was encoded
using a neural network. The encodings at each time step were
subtracted from their prior, and this difference was fused
with the latent encodings, which was then used by the RL
algorithm. This technique was analogous to the work done
by [17]. The optical flow was approximated using the dif-
ference in encodings, which provided temporal information.
The spatial component was obtained by encoding each of the
frames. This technique provided the CNN with a necessary
inductive bias. They chose Rainbow DQN, and RAD [10] to
be their base algorithm and found that it outperformed SOTA
algorithms in performance and sample efficiency. Also, they
showed that their algorithm reached optimal performance in
state-based RL despite only being provided positional state
information and no state velocity.

They also separately investigated encoding frames and
then stacking the encodings together instead of the raw im-
ages. This technique yielded sub-par results, and the authors
hypothesized that stacking high dimensional image frames
would allow CNNs to learn temporal information. However,
by stacking latent frames, the temporal information was lost
and thereby causing the difference in results.

2.3 Temporal Shift Module

While working with video model activations consisting of
N frames, C channels and H height and W width,

A € RNXCXTXHXW 91y CNNs don’t consider the temporal
dimension T thereby ignoring it. [11] addressed this by shift-
ing channels, thereby mixing information from neighbor-
ing frames through the temporal dimension and referred
to it as the Temporal Shift Module (TSM). Therefore the
current frame contains information that was obtained from
its surroundings. They leveraged the concepts of shifts and
multiply-accumulate, which are the basic principles of a
convolution operation. They extended it by shifting one
step forward and backward along the temporal dimension.
Furthermore, the multiply-accumulate was folded from the
channel dimension to the temporal dimension. However,
for online video recognition, only previous frames could be
shifted forward and not the other way around. Therefore in
such cases, a uni-directional TSM was implemented.

While this process doesn’t require extra parameters, they
found that this technique had drawbacks - 1) The data move-
ment generated due to the shift strategy was not efficient and
would increase the latency, especially since 5D activation
of videos results in large memory usage. This implied that
moving all channels would result in inference latency and
large memory footprint on the hardware hosting the model.
2) Moving channels directly across the temporal dimension,
referred to as in-place shift, would affect the accuracy of
model since the spatial model is distorted. This is because
the current channel would have some of its frames (or feature
maps) shifted, and therefore, the 2D CNN would lose that
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information during the classification process. The authors
obtained a 2.6 % accuracy drop relative to their baseline [23]
while naively shifting channels. The former issue was miti-
gated by shifting only a partial number of channels, thereby
reducing the amount of data movement and latency incurred.
For the latter problem, the TSM module was inserted within
the residual branch of a Res-Net, thereby enabling the 2D
CNN to learn spatial features without degrading. The au-
thors claimed that this method, namely residual shift, allows
the information present within the original activation to
be retained after channel shifting due to identity mapping.
Therefore, the TSM module is a simple modification to the
2D CNN. After encoding images, it shifts frames in the tem-
poral dimension by +1, -1, and 0. However, shifting frames
by -1, i.e. backward, is only possible for offline problems. For
online image classification problems, the frames are moved
+1 [11].

A major advantage of online TSM was that it enabled
multi-level temporal fusion. Other online methods are gen-
erally limited to late and mid-level temporal fusion. The
authors found multi-level temporal fusion to significantly
influence temporal problems [11, 24, 25].

2.4 Prioritized Deep Q Network

[12] combined Q Networks with CNNs in order to obtain an
approximation of the Q values -

Q*(s,a) = max, E[r; +yreg +Y?rez +...|s; = s,a; = a, 1]

The above expression maximizes the sum of discounted
rewards r for an agent following a policy, = = P(als), using
a discount factor, y during every time step t. It was known
to be the first RL algorithm that could be integrated into
various environments with raw pixels as inputs. They ad-
dressed the learning instabilities that RL presented when
coupled with a deep neural network using a replay buffer
and target network. They found that the sequential observa-
tions were highly correlated with each other and also that
minimal changes to Q would drastically affect the policy.
The use of a replay buffer mitigated this issue by randomiz-
ing the data during the training process. This was done by
storing the transitions as a tuple (s, ay, s;41, 1t + 1) of state,
action, next states and rewards within a cyclic buffer. This
provided a two-fold benefit. The replay buffer reduced the
number of environments needed for the agent to learn since
the agent could always resample from the buffer. Further-
more, this reduces the variance during gradient descent since
batches are sampled. The target network takes the weight
from the current network but updates it only after a fixed
duration of time. The target network’s weights are then used
to compute the Temporal Difference (TD) error, which is
the difference between the Q value and the TD target. If we
use the parameters from the current network to estimate
both these values, they’ll become correlated and will result
in instability. [7] suggested using dual instead of single esti-
mators to estimate the expected return since the latter led to
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over-estimated values and introduced the Double-Q learning
algorithm (DDQN). A later investigation by [22] showed that
rather than learning a separate function, the target network
could be used to obtain the estimate [2, 12].

In addition, [15] modified the experience replay process
so that, instead of the conventional uniform sampling pro-
cess, important samples were given a higher priority. The
Prioritized Experience Replay (PER) technique was found to
double the learning speed and also achieve SOTA scores on
Atari games.

3 Approach

The motivation behind TSRL was to introduce an efficient
algorithm that did not require any additional parameters,
leveraging the benefits of multi-level temporal fusion. The
architecture developed by [11] for online Temporal Shift
was modified and incorporated into a Double DQN with
Prioritized Experience Replay (DDQN-PER). Lin et al. [11]
used a ResNet model for their experiments, however going
with the conventional CNN models used by the vision RL
community, we used a shallow three layer CNN.

Also, we used in-place shift instead of residual shift wherein
the channels were directly moved across the temporal di-
mension. We concluded that the accuracy improvements
obtained, in predicting the Q values, while modeling the tem-
poral aspect would compensate for the loss obtained due to
spatial degradation. Furthermore, the online TSM algorithm
[11] cached the features in memory and then replaced it with
those in the next time step. Our approach was to directly roll
the features across time steps.

Finally, the authors of the TSM paper found that the high-
est accuracy for the online model was obtained by shifting
1/8th of channels for each layer of the neural network. How-
ever, while testing our algorithm, we found that the best
results were obtained when we shifted around 1/5 to 1/3 of
our channels.

A schematic of our algorithm has been given in Figure 1
and a PyTorch based pseudocode for our algorithm has been
presented in Algorithm 1 -

4 Experiments

We tested our algorithm using OpenAI Gym Atari environ-
ments with visual images as input. An open-sourced im-
plementation of DDQN (https://github.com/higgsfield/RL-
Adventure) combined with PER was used. The images were
converted to grayscale to speed up the learning process. To
gauge the sample efficiency of TSRL we compared it with a
generic DDQN-PER getting stacked images as input. Also,
we used our own implementation of the algorithm developed
by [16] and referred to it as Flare, in order to compare against
state of the art. The number of stacked images was kept equal
to the timesteps considered by TSRL both for DDQN-PER
and Flare. Also, all algorithms were run for 1.4M time steps
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Figure 1. A schematic of Temporal Shift Reinforcement Learning algorithm

Algorithm 1 TSRL

For each step t do
For each convolution step do

x = self.relul(self.convi(x))
n,c,h,w = x.shape
x = x.reshape(n//T, T, ¢, h, w)
copy = torch.clone(x)
x[:,:, :¢c//8, :, :] =
torch.roll(x[:,:, :¢//8, :, :],
shifts = 1, dims = 1)
x[:,0, :c//8, :, :] =
copy[:,0, :¢c//8, :, :]
z_t = FullyConnected (x)

End For

End For

using 5 different trials. The performance of the algorithm
was gauged by averaging the trials and then summing over
all rewards obtained [3, 4, 13].

4.1 Results

Table 4.1 shows the sum of average rewards obtained across
the five runs for each environment. The shift parameter, s
column, shows the ratio of channels that were shifted. For
instance, if s = 3, then the first 1/3' channels would be
shifted across the temporal dimension for every layer of the
CNN.

Figure 2, 3, 4, 5 shows the reward obtained per episode. In
some cases, an algorithm may have large step sizes relatively
early. This would lead to a lower number of episodes and
vice versa.

TSRL outperforms both DDQN-PER and Flare in all envi-
ronments except Asterix, wherein it only defeats the DDQN-
PER.

251
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Figure 2. Plots of episode vs reward for Freeway environ-
ment
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Figure 3. Plots of episode vs reward for Asterix environment
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Figure 4. Plots of episode vs reward for Riverraid environ-
ment
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Figure 5. Plots of episode vs reward for Pong environment

Table 1. Sum of average rewards obtained.

H Environment Shift TSRL DDQN-PER  FLARE \
Freeway 3 182915  17807.6 14686.19
Asterix 5 2285425  20702.0  33496.93
Riverraid 5  41850.3 348492 34966.0

Pong 5 789217 722180  -36528.20

4.2 Discussion

A major difference between our algorithm and other RL al-
gorithms taking temporal aspects into account is that we
provide multi-level temporal fusion. Most RL algorithms im-
plement early fusion [12] and the recent ones [1, 16] have
experimented with late fusion. However, our approach en-
ables RL to have temporal fusion across all levels. This type
of fusion was found to significantly help difficult temporal
modeling problems [11].

It is interesting to note that instead of a single shift hy-
perparameter being optimal for all tasks, it varies across
environments. We hypothesize that this is caused due to
the trade-off between spatial and temporal learning. Some
environments might not require a higher number of feature
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maps and therefore could work with a lower shift hyperpa-
rameter. This would permit a larger number of channels to
be moved, leading to improved temporal learning. However,
this might not be the case in complicated environments, and
such situations might require the shift hyperparameter to be
higher.

Finally, we see that TSRL is able to beat the baseline and
SOTA for almost all the environments. ! Since Flare concate-
nates latent flow with features, we feel that this increases
the number of parameters and, therefore, the relative train-
ing time compared to TSRL. Furthermore, the latent flow is
obtained by subtracting the current frame from the imme-
diately preceding frame while ignoring the frames before
that. This might not provide much information in situations
when the difference between immediate frames is minute.
This problem is mitigated by the multi-level fusion abilities
of our algorithm.

5 Conclusions

We present a facile shifting technique for learning temporal
features in DRL problems without the requirement of addi-
tional parameters. After testing our algorithm on OpenAl
Atari environments, we find that our algorithm outperforms
the commonly used frame-stacking heuristic.

A major drawback of our algorithm is the requirement
to find a suitable shift hyperparameter. Future work could
include either learning the optimal value of this hyperpa-
rameter online or changing how the shift is performed (such
as residual shift [11]) so that the spatial features aren’t dis-
turbed.
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