Apache Submarine: A Unified Machine Learning

Platform Made Simple

Kai-Hsun Chen
Academia Sinica
University of Illinois at
Urbana-Champaign
kaihsun@apache.org

Hung-Chang Hsiao
National Cheng Kung University
hchsiao@csie.ncku.edu.tw

Xun Liu
DiDi
liuxun@apache.org

Huan-Ping Su
Union.ai
kevin@union.ai

Wangda Tan
Snowflake
Wangda@apache.org

Yanbo Liang
Apache Software Foundation
ybliang@apache.org

Wei-Chiu Chuang
Cloudera
weichiu@cloudera.com

Zhankun Tang
Cloudera
ztang@apache.org

Wen-Chih Lo
Chunghwa Telecom
wenchih@apache.org

Wangqiang Ji Byron Hsu Keqiu Hu
JD.com UC Berkeley LinkedIn
jiwg@apache.org byronhsu@apache.org Khu@linkedin.com
HuiYang Jian Quan Zhou Chien-Min Wang
KE Holdings Ant Group Academia Sinica
jianhuiyang001@ke.com zhouquan@apache.org cmwang@iis.sinica.edu.tw
Abstract ACM Reference Format:

As machine learning is applied more widely, it is necessary
to have a machine-learning platform for both infrastructure
administrators and users including expert data scientists
and citizen data scientists [24] to improve their productiv-
ity. However, existing machine-learning platforms are ill-
equipped to address the “Machine Learning tech debts” [36]
such as glue code, reproducibility, and portability. Further-
more, existing platforms only take expert data scientists into
consideration, and thus they are inflexible for infrastructure
administrators and non-user-friendly for citizen data scien-
tists. We propose Submarine, a unified machine-learning
platform, and takes all infrastructure administrators, expert
data scientists, and citizen data scientists into consideration.
Submarine has been widely used in many technology com-
panies, including Ke.com and LinkedIn. We present two use
cases in Section 5.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

EuroMLSys’22, April 5-8, 2022, RENNES, France

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9254-9/22/04.
https://doi.org/10.1145/3517207.3526984

Kai-Hsun Chen, Huan-Ping Su, Wei-Chiu Chuang, Hung-Chang
Hsiao, Wangda Tan, Zhankun Tang, Xun Liu, Yanbo Liang, Wen-
Chih Lo, Wangiang Ji, Byron Hsu, Keqiu Hu, HuiYang Jian, Quan
Zhou, and Chien-Min Wang. 2022. Apache Submarine: A Unified
Machine Learning Platform Made Simple. In 2nd European Workshop
on Machine Learning and Systems (EuroMLSys’22), April 5-8, 2022,
RENNES, France. ACM, New York, NY, USA, 8 pages. https://doi.
org/10.1145/3517207.3526984

1 Introduction

The ubiquity of machine learning in all aspects of businesses
imposes plenty of challenges for infrastructure administra-
tors, expert data scientists, and citizen data scientists. For
example, as described in [28], models with large parame-
ters’ space cannot fit into the memory of a single machine,
necessitating model parallelism support. In addition, data
parallelism support is necessary for models with high com-
putation cost to shorten the training process. Therefore, dis-
tributed training techniques like data parallelism and model
parallelism which leverage distributed computing resources
to train the models are necessary.

Despite rapid development of distributed machine-learning
platforms, existing platforms fail to meet the needs of both
infrastructure administrators and users, who have different
requirements for the system. We will discuss the problems
in the existing platforms respectively from perspectives of

https://doi.org/10.1145/3517207.3526984
https://doi.org/10.1145/3517207.3526984
https://doi.org/10.1145/3517207.3526984

both infrastructure administrators and users including ex-
pert data scientists and non-expert users, or “citizen data
scientists” [24], who are experts in other fields such as fi-
nance, medicine, and education, but who are not necessarily
familiar with machine learning techniques.

From an expert data scientists’ perspective, a machine-
learning platform must be able to help them improve the
productivity, shortening the model development time to pro-
duction. However, existing platforms are not properly de-
signed to meet this expectation. Firstly, existing platforms
like TFX [17] do not cover the whole model lifecycle which
is composed mainly of data preparation, prototyping, model
training, and model serving, forcing data scientists to switch
toolsets for different stages of the model development, creat-
ing an inconsistent user experience. Secondly, developing on
these platforms requires deep expertise. For instance, MLflow
[39] requires data scientists to write a Kubernetes Job Spec
to run an MLflow project on Kubernetes. In Determined [18],
data scientists need to rewrite their model code to integrate
with its APL

From a citizen data scientists’ perspective, they spend
most of their time understanding the business problems and
are less interested in learning machine learning APIs. Hence,
citizen data scientists expect a machine-learning platform
which saves their time on machine-learning framework API
and helps them focus on domain-specific problems. However,
existing platforms only take expert data scientists into con-
sideration, and thus they are non-user-friendly for citizen
data scientists. Ironically, the citizen data scientist popula-
tion is a much larger and fast growing community than the
expert data scientist population. A new platform that con-
siders both expert data scientists and citizen data scientists
is a must.

From an infrastructure administrators’ perspective, an
ideal machine-learning platform should be resource-efficient
and flexible, but existing platforms were not capable of achiev-
ing these goals. Firstly, most platforms such as Kubeflow [16]
only support Kubernetes as a resource orchestrator. How-
ever, many technology companies like LinkedIn have deeply
invested in other orchestration technologies, such as YARN.
Secondly, some platforms like Metaflow [31] are built on top
of proprietary services offered by public cloud providers such
as Amazon Web Services, Microsoft Azure, or Google Cloud
Platform. Hence, they are not suitable for companies that
deploy machine-learning platforms in data centers. Thirdly,
existing platforms like TFX are tightly integrated with a sin-
gle machine-learning framework (e.g. TensorFlow [6]). The
tight coupling between the modeling layer and the platform
layer limits the flexibility and extensibility of the system,
because the developers lose the ability to use a different
machine-learning framework, which may be more efficient
for a different use case.

We made a decision to build Apache Submarine, a uni-
fied machine-learning platform, to address the problems

mentioned above. A “unified” machine-learning platform
describes a platform that provides a unified solution for in-
frastructure administrators, expert data scientists and citizen
data scientists. Submarine takes both infrastructure adminis-
trators and users including expert data scientists and citizen
data scientists into consideration. For expert data scientists,
Submarine is a unified platform that provides data scientists
with a consistent set of tools built for different stages in the
model development lifecycle. In addition, data scientists can
operate Submarine without extra infrastructure knowledge.
For citizen data scientists, Submarine provides a high-level
SDK that allows users to develop their models in a few lines of
Python code. We interviewed data scientists and found that
the machine learning algorithms, such as the prediction of
click-through rate, used in most applications can be modeled
after a few parameterized templates, and a number of tem-
plates are packaged into the Submarine Predefined Template
Service to enable citizen data scientists to run experiments
without code. Additionally, all components in Submarine are
well integrated with Submarine Workbench, and thus citizen
data scientists can operate the platform easily. For infrastruc-
ture administrators, Submarine supports both on-premise
clusters managed by Kubernetes and YARN and clouds to
ensure portability and resource-efficiency. Also, Submarine
supports popular machine-learning frameworks including
TensorFlow, PyTorch [34], and MXNet [14] to ensure the
flexibility and extensibility of the system.

Machine-learning platform is a new and exciting research
topic, where it sits at the intersection of Systems and Ma-
chine Learning. Therefore, there are not many best practices
available so far. Leading technology companies [11] tried to
build their in-house machine-learning platforms, often to
fail or only to claim success after repeated trials. We decided
to develop Submarine as an open source project governed
by the Apache Software Foundation so we can build a com-
munity and share the best practices. Today, the project is
joined by contributors all over the world, including the de-
velopers from Cloudera, DiDi, Facebook, JD.com, LinkedIn,
KE Holdings, Ant Group, Microsoft, among others.

2 Related work

Nowadays, many machine-learning platforms have been de-
veloped by companies and open source communities. We
briefly overview some major open source works including
Google’s TFX [17], Kubeflow [16], Netflix’s Metaflow [31],
Determined-AI’s Determined [18], Microsoft’s NNI (Neural
Network Intelligence) [5], Tencent’s Angel-ML [9], Databricks’
MLflow [39], and Anyscale’s Ray [32] in this section.

TFX is a toolkit for building machine learning pipelines.
Users can define their TFX pipelines which are a sequence of
components from data engineering to model serving. More-
over, with TFX pipelines, users can orchestrate their machine

learning workflows on several platforms, such as Apache
Airflow [7] Apache Beam [12], and Kubeflow Pipelines.

Kubeflow is an end-to-end machine-learning platform
which aims to make deployments of machine learning work-
flows on Kubernetes. Kubeflow also provides an interface
that allows users to track and compare experiments. Thus,
users can decide which experiment is the best and use it as
the main source for future steps.

Metaflow is a Python library that helps scientists and
engineers build and manage real-life data science projects.
Metaflow provides a unified API to access the infrastructure
stack that is required to execute data science projects, from
prototype to production.

Determined is an open source deep learning training plat-
form that makes building models fast and easy. Determined
allows users to develop and train models in customizable
containers, which enable simple and consistent dependency
management throughout the model development lifecycle.

MLflow is an open source machine-learning platform de-
veloped by Databricks. With MLflow, users can easily man-
age the machine learning lifecycle, including tracking exper-
iments, packaging code into reproducible runs, and sharing
and deploying models.

Several in-house machine-learning platforms are used to
streamline the workflow from idea to serving models in pro-
duction, such as Facebook’s FBLearner Flow [20], Twitter’s
Cortex [33], Uber’s Michelangelo [22], and Airbnb’s Bighead
[13]. However, these platforms are not yet open sourced.

Also, cloud vendors provide services including training,
serving, and model management such as Amazon’s Sage-
Maker [35], Microsoft Azure Machine Learning [10], Google’s
Vertex Al [38], Cloudera Data Science Workbench [15], and
Valohai MLOps platform [37]. Like the in-house platforms,
they are proprietary.

3 Architecture

As shown in Fig. 1, Submarine consists of three parts includ-
ing user interface, Submarine server, and resource orches-
trator. We will discuss each part as follows. Moreover, the
components marked with asterisks are in-progress works or
future works.

3.1 Submarine user interface

Submarine provides three types of user interface, including
command line (CLI), software development kit (SDK), and
workbench UL To elaborate, these user interfaces manipulate
each component in the model lifecycle via REST API exposed
by Submarine server. The REST API service handles HTTP
requests and is responsible for authentication.

3.1.1 Submarine CLI. Users can interact with each com-
ponent in Submarine server through command line. For ex-
ample, users can run a MNIST [30] training experiment in a
distributed manner with only one command on Submarine.

User interface

Command line Workbench Ul SDK
Submarine server l
REST API
“Data *Model Environment Template
Manager Manager Manager Manager
Experiment Experiment Experiment
Manager Submitter Monitor
Kubernetes ‘ ‘ Yarn

Figure 1. Submarine architecture overview

3.1.2 Submarine Python SDK. Users can interact with
each component in Submarine server through a Python SDK.
Furthermore, Submarine Python SDK is an intuitive high-
level SDK to streamline the workflow from idea to serving
models in production. Specifically, with the SDK, data scien-
tists can develop their models in a few lines of Python code
instead of building models from scratch. For instance, the pre-
diction of click-through rate (CTR) is critical in recommender
systems, and DeepFM [21] is one of the most popular models
related to CTR prediction. Users can build a DeepFM model
in just four lines of Python code with Submarine Python
SDK.

3.1.3 Workbench. To provide better user experiences,
Submarine comes with an easy-to-use workbench UI for
users to manage each stage in the model lifecycle. We will
explain how workbench interacts with each stage in the
model lifecycle.

e Data preparation (future work): Users can select
features existing in feature stores instead of rebuilding
these features repeatedly via Submarine Workbench.
Also, Submarine plans to visualize training data in
a meaningful way which makes it easier to identify
patterns and trends than looking through thousands
of rows on a spreadsheet.

e Prototyping: Submarine provides Jupyter notebook
[26], a user-defined prototyping environment, in work-
bench. Users can develop their machine learning algo-
rithms with popular machine-learning frameworks or
Submarine high-level Python SDK.

e Model training: After model development is finished,
users can easily deploy experiments, distributed train-
ing jobs, on Kubernetes or YARN through the work-
bench UL Moreover, Submarine provides metric visu-
alization of experiments in an innovative way which
enables data scientists to compare the performance of
experiments easily.

e Model serving (future work): After data scientists
select the models, users can serve the trained models
to production, and perform online/offline inference
through the workbench UL

3.2 Submarine server

Submarine server plays the role of control plane in Subma-
rine. Submarine server has two main functionalities. Firstly,
Submarine server exposes a REST API for users to manipu-
late each component in the model lifecycle. Secondly, Subma-
rine server consists of several core services, including data
manager, model manager, environment manager, template
manager, experiment manager, experiment submitter, and
experiment monitor.

3.2.1 Submarine Environment Service. Machine Learn-
ing experiments must be reproducible. Therefore, Submarine
encapsulates Docker and Virtual Machine in Submarine En-
vironment Service. The service provides a convenient way
for data scientists to package up applications and preconfig-
ured library dependencies to ensure the reproductivity of
experiments.

3.2.2 Submarine Experiment Service. Submarine pro-
vides a flexible and easy-to-use abstraction, Submarine ex-
periment, to help users achieve better user experiences. As
shown in Fig. 2, a Submarine experiment consists of three
parts: Input, Submarine experiment task, and Output.

Input Experiment task

Experiment
configuration

Ty

Runnable code }

— Output

Predefined template

Environment

Figure 2. Submarine experiment

e Input: Input consists of two components as shown in
Fig. 2. Experiment configuration specifies resource con-
straints, training data, Submarine environment, place-
ment constraints, number of experiment workers, and
so on. Moreover, the predefined template is an impor-
tant feature which enables users to run experiments
easily, and it is an optional parameter. More details
about the Predefined Template Service is described in
Section 3.2.3.

e Experiment task: In Fig. 2, runnable code such as
Python scripts can be used to train a model or to pro-
cess data. Moreover, the environment specified in the

experiment configuration includes the experiment de-
pendencies such as Python and TensorFlow and OS-
/Base libraries such as Ubuntu and CUDA. With the
environment, experiments become reproducible.

e Output: The main output of the experiment is arti-
facts which may include models. Furthermore, logs and
metrics are used to troubleshoot bugs and evaluate the
quality of models. In addition, metric visualization is
provided in Submarine Workbench.

Experiment
Manager

Input Status

Experiment Experiment
Submitter Monitor

Experiment task Status

Kubernetes ‘ ‘ Yarn

Figure 3. Architecture of Submarine Experiment Service

As shown in Fig. 3, Submarine implements the experiment
service via three components: experiment manager, experi-
ment submitter and experiment monitor. These components
will be discussed as follows.

e Experiment manager: Experiment manager listens
to experiment-related requests from users. When the
experiment manager accepts a request, it persists the
experiment metadata in a database so that experiments
become easy to compare and reproducible. In addition,
the experiment manager will forward the request to
the experiment submitter.

e Experiment submitter: The experiments can be launched

in YARN cluster, Kubernetes cluster or locally. Hence,
Submarine provides two types of submitters, YARN
submitter and Kubernetes submitter, to submit the
experiment to the cluster managed by YARN or Kuber-
netes. Furthermore, YARN submitter uses Tensorflow
on YARN (TonY) [23] as the runtime to run experi-
ments. In addition, the Kubernetes submitter used op-
erators such as tf-operator as the runtime. To ensure ex-
tensibility, Submarine provides a submitter abstraction,
and thus users can implement tailor-made submitters
to support new container orchestration frameworks
such as Docker Swarm [3].

¢ Experiment monitor: Experiment monitor tracks the
status of experiments and records important events
and sends them to the experiment manager. This in-
formation plays a key role to predict the success or
failure of the in-progress experiment.

3.2.3 Submarine Predefined Template Service . The
real-world data scientists spend the majority of time on hy-
perparameter tuning and training with different datasets
instead of designing new model algorithms. Submarine pro-
vides the predefined template abstraction to make users run
experiments with different hyperparameters easily. Fig. 4
demonstrates the mechanism of the Predefined Template
Service which will be discussed as follows.

Request

Response

Register

‘ Template Manager Experiment Manager

Figure 4. Template manager mechanism

Firstly, clients define predefined template specifications
in JSON files as shown in Listing 1. Furthermore, clients
can register these specifications in the template manager
for sharing and reusing. Predefined template specifies the
experiment specification and model parameters which users
need to specify. Take Listing 1 as an example, users just need
to specify two parameters, learning_rate and batch_size, to
train a CNN model [29] for the MNIST dataset in a distributed
manner.

Secondly, in the workbench, citizen data scientists can
select the appropriate templates which have been registered
in the template manager. With the help of the template,
users only need to fill in the parameters which the template
requires to run an experiment. In other words, users can run
experiments without writing one line of code.

Lastly, the Submarine community has already provided
a bunch of templates for popular machine learning appli-
cations such as image recognition and click-through rate
prediction. For expert data scientists, they can easily register
different kinds of templates for different use cases. For citi-
zen data scientists, they can submit an experiment without
writing any code.

3.3 Container orchestration framework

Submarine supports both Kubernetes and Apache Hadoop
YARN as our container orchestration frameworks. By lever-
aging these frameworks, clusters can scale up/down auto-
matically based on dynamic resource requirements to save
costs. In addition, the orchestrators can perform different
scheduling strategies to improve resource utilization of clus-
ters.

4 Discussions

In Table 1, we compare the major features supported by
Apache Submarine and other open source machine learning

{
"name": "tf-mnist-template",
"author": "Submarine",
"description": "A template for tf-mnist",
"parameters": [{
"name": "learning_rate",
"value": 0.001,
"required": true,
3,
{
"name": "batch_size",
"value": 256,
"required": true,
3
1,
"experimentSpec": {
"meta": {
"emd": "python mnist.py
--log_dir=/train/log
--learning_rate={{learning_rate}?}
--batch_size={{batch_size}}",
"framework": "TensorFlow",
"namespace": "default"
}
}
}

Listing 1. A JSON file to define a predefined template speci-
fication (This example ignores some details.)

systems. The notations used in Table 1 are listed in Table 2.
In-house platforms such as FBLearner Flow, Michelangelo
and Bighead are excluded from this discussion due to their
proprietary nature. Detailed descriptions are discussed in
the following subsections.

4.1 Comparing Kubernetes and YARN

Submarine supports both Kubernetes and Apache Hadoop
YARN as our container orchestration frameworks. Kuber-
netes is the most popular container orchestrator in the world,
and thus almost every open source machine-learning plat-
form supports it, including TFX, Google Kubeflow, Determined-
Al Determined, and so on. On the other hand, there have
been very few, if any, other open source machine-learning
platforms that support YARN. The reasons that Submarine
needs to support YARN are explained as follows.

4.1.1 Support Hadoop ecosystem. YARN is a main com-
ponent of Apache Hadoop. With the support of YARN, Sub-
marine easily integrates with projects in the Hadoop ecosys-
tem. For instance, Submarine integrates Azkaban [2] which
allows data scientists to submit a set of workflow tasks with
Spark for data preprocessing and TensorFlow for distributed
deep learning directly to Azkaban from Zeppelin notebooks
[40].

Table 1. Comparisons among Submarine and other platforms. The notations are defined as follows. v means existing features,

and o means in-progress features, and A means future works

TFX[17] | KF[16] | DT[18] | MF[31] | MLF[39] | NNI[5] | AML[9] | Submarine
Open source v \4 v v v v v v
Kubernetes v 4 v v v v
YARN \4 v
Multi ML frameworks 4 v v v v v v
Feature store v A
Prototyping environment \4 \4 v
Distributed training \4 \4 v v v v v
High-level training SDK v v
Hyperparameter tuning \4 v v v v 0
Experiment tracking v v v v v v v v
Pipeline v v v A
Built-in pipeline component v A
Model management v)
Model serving v v v A
End-to-end platform v A

4.1.2 Support fine-grained GPU scheduling. Most clus-
ters are heterogeneous in the real world. To improve resource
utilization of heterogeneous clusters, YARN supports differ-
ent compute resources such as memory, CPU, GPU, and
FPGA. GPU scheduling is especially important for efficiency
of distributed deep learning workloads.

Typically, distributed deep learning workloads require
gang scheduling reducing the flexibility of scheduling, so
GPU scheduling is a key factor in efficiency of distributed
deep learning workloads. Due to the effect of locality on GPU
utilization described in [25], a locality-aware GPU scheduler
can improve GPU utilization significantly via reducing re-
source fragmentation and synchronization overheads. YARN
provides GPU topology scheduling [1], a locality-aware GPU
scheduling strategy. Nevertheless, as described in [27], Ku-
bernetes scheduler does not provide a native fine-grained
GPU scheduler, so users need to develop customized solu-
tions by themselves, such as gpushare-scheduler-extender
in Alibaba Cloud [8].

4.1.3 Focus on data-intensive applications. The design
goals of YARN and Kubernetes are quite different. YARN can
schedule more than 1000 containers per second, but Kuber-
netes can only schedule about 100 containers per second
due to latency. Kubernetes stores plenty of data in etcd [4]
which causes long latency, and thus the scheduling perfor-
mance is limited. Unlike Kubernetes, YARN only persists
application-level metadata, and thus the latency is short. As
the result, YARN is more suitable for data-intensive applica-
tions, whereas Kubernetes is optimized for long-running ap-
plications. In other words, if users transplant data-intensive
applications from Apache YARN to Kubernetes, the efficiency

will decrease significantly. To conclude, Kubernetes lies at
the heart of DevOps, and YARN plays a key role in data
engineering.

4.2 Supporting multiple machine-learning
frameworks

The tight coupling between the modeling layer and the in-
frastructure layer, caused by the machine-learning platform
designer’s desire to support a single machine-learning frame-
work, often forces the developers to resort to “glue code”,
which is the auxiliary code to connect the machine learn-
ing code with the rest of the stack, inevitably limiting the
flexibility and the extensibility of the system. The machine-
learning framework landscape is rapidly evolving. From a
future-proof point of view, it is best to make the framework
interchangeable. To avoid glue code, Submarine provides a
common interface that supports popular machine-learning
frameworks, including TensorFlow, PyTorch, and MXNet.
Data scientists are able to try and identify the most appro-
priate framework without significantly refactor the code.

4.3 High-level training SDK and Predefined
Template Service

Machine learning techniques have been widely used in vari-
ous fields such as finance, medicine, and education. However,
most experts in these fields are not familiar with machine
learning techniques, and thus they spend too much time on
learning machine-learning framework API rather than on
solving domain-specific problems.

Submarine creates high-level Python SDK and prede-
fined template to address the challenge. Submarine Python

SDK provides many easy-to-use and domain-specific ma-
chine learning APIs. With the help of Submarine Python
SDK, users can implement models in a few lines of Python
code and focus on domain-specific problems. Moreover, Sub-
marine Predefined Template Service enables users to run
experiments without writing any code.

4.4 End-to-end platform

We define an end-to-end platform as follows. First, the plat-
forms need to support each stage in the model lifecycle,
including data preparation, prototyping, model training and
model serving. Second, the platforms must support container-
ization and be able to be deployed on resource orchestrator
clusters. In other words, users can manage their models in
customizable containers which can be deployed, scaled, and
managed by resource orchestrators. An end-to-end platform
allows data scientists to create end-to-end machine learn-
ing workflows without switching toolsets frequently and
manage the whole machine learning lifecycle in a consistent
user interface. Third, end-to-end platforms must be capable
to manage the whole model lifecycle in a consistent user
interface.

4.5 Learning curve

Existing machine-learning platforms requires deep expertise
to use and operate. In MLflow, data scientists need to write a
Kubernetes Job Spec to run an MLflow project on Kubernetes.
To solve this problem, Submarine enables data scientists to
run distributed training jobs on Kubernetes or YARN easily
via a user-friendly workbench Ul In Determined, data sci-
entists need to rewrite their model codes to integrate with
its APIL. On the other hand, data scientists can execute their
code on Submarine without modification.

5 Use cases

Submarine has been widely used in many technology com-
panies, including Ke.com and LinkedIn. We summarized the
main points of these use cases as follows.

5.1 Ke.com

Ke.com, also known as Beike in Chinese, is the leading in-
tegrated online and offline platform for housing transac-
tions and services in China. Data scientists develop models
for speech recognition to improve customer service qual-
ity. They run machine learning workloads on a 30+ node
Submarine cluster, in which each node has 2 GPUs. The per-
formances of these speech recognition workloads running
on two nodes can achieve 1.8 times faster than running on a
single node.

5.2 LinkedIn

The mission of LinkedIn is to connect the world’s profession-
als to make them more productive and successful. LinkedIn

is the world’s largest professional network with 722+ mil-
lion members in more than 200 countries and territories
worldwide. It has a 50+ node Submarine cluster in which
each node is equipped with 5 GPUs. Submarine is primarily
applied to speed up the model training of the BERT-Large
model [19]. This model for recommendation system has 24
layers and 300+ million parameters to predict and under-
stand user behaviors automatically. In addition, more than
3500 experiments run in the Submarine cluster per day.

6 Future work

In the future, the Submarine community plans to focus on
three features. Firstly, a feature store which enables data
scientists to reuse features instead of rebuilding these fea-
tures repeatedly. Secondly, a workflow pipeline management
system which enables users to build and manage reusable
machine learning workflow. Additionally, built-in pipeline
components allow users to build their pipelines easily. Lastly,
a containerized model serving service which enables users to
serve machine learning models written by different machine-
learning frameworks.

7 Conclusions

The ubiquity of machine learning in production imposes
plenty of challenges on both infrastructure administrators
and users including expert data scientists and citizen data
scientists. However, existing platforms only take expert data
scientists into consideration, and thus fail to meet the needs
of both infrastructure administrators and users. Unlike ex-
isting platforms, Submarine provides a unified solution for
infrastructure administrators, expert data scientists, and citi-
zen data scientists. In other words, Submarine is a flexible
and portable platform for infrastructure administrators, a
unified system to streamline the workflow from idea to serv-
ing models in production, and an easy-to-use platform for
citizen data scientists to save their time on machine-learning
framework API and help them focus on domain-specific prob-
lems. In conclusion, the design principle of Submarine is best
explained by Alan Kay’s quote “Make simple things simple,
and complex things possible”

Acknowledgments

Hung-Chang Hsiao was partly supported by the Intelligent
Manufacturing Research Center (iMRC) from The Featured
Areas Research Center Program within the framework of
the Higher Education Sprout Project by the Ministry of Edu-
cation (MOE), and by Ministry of Science and Technology
under Grant MOST 110-2218-E-006-027.

Thank for contributions from the following contributors:
https://github.com/apache/submarine/graphs/contributors.

References [21] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He. 2017. DeepFM: A Factorization-

[1] 2018. [YARN-8851] GPU hierarchy/topology scheduling support based Machine Based Neural Nfetwork for CTR Predi‘cti(.)n. In Prf)ceedings of
on pluggable device framework. https:/issues.apache.org/jira/browse/ the 26th International Joint Conference on Artificial Intelligence (Mel-
YARN-8821 bourne, Australia) (IJCAI’17). AAAI Press, 1725-1731.

2020. Azkaban. https://github.com/azkaban/azkaban [22] J. Hermann and M.D. Balso. 2017. Meet michelangelo: Uber’s machine
2020. Docker Swarm. https://docs.docker.com/engine/reference/ learning platform. (2017). https://eng.uber.com/michelangelo

commandline/swarm/ [23] A Hsu, K Hu, J Hung, A Suresh, and Z Zhang. 2019. TonY: An Orches-
2020. eted. https:/github.com/etcd-io/etcd trator for Distributed Machine Learning Jobs. arXiv:1904.01631 [cs.DC]
2020. Microsoft NNI https:/github.com/microsoft/nni [24] C.Idoine. 2018. Citizen Data Scientists and Why They Matter. Retrieved

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. November 21, 2020 from https://blogs.gartner.com/carlie-idoine/2018/
Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. 05/13/citizen-data-scientists-and-why-they-matter/

Moore, D.G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, [25] M. Jeon, S. Venkataraman, A. Phanishayee, U. Qian, W. Xiao, and F.
M. Wicke, Y. Yu, and X. Zheng. 2016. TensorFlow: A System for Large- Yang. 2019. Analysis of Large-Scale Multi-Tenant GPU Clusters for
Scale Machine Learning. In Proceedings of the 12th USENIX Conference DNN Training Workloads. In Proceedings of the 2019 USENIX Conference
on Operating Systems Design and Implementation (Savannah, GA, USA) on Usenix Annual Technical Conference (Renton, WA, USA) (USENIX
(OSDI'16). USENIX Association, USA, 265-283. ATC °19). USENIX Association, USA, 947-960.

[7] Airflow 2020. Apache Airflow. https://airflow.apache.org/ (26] Jupyter 2020. Jupyter notebook. https://jupyter.org/

[8] Aliyun 2020. AliyunContainerService gpushare-scheduler-extender. (27] K. Zhang and Y. Che. 2019. Minimizing GPU Cost for Your Deep Learn-

https://github.com/AliyunContainerService/gpushare-scheduler- ing on Kubernetes. https://events19.Ifasiallc.com/events/kubecon-
extender cloudnativecon-china-2019/schedule-english/

[9] Angelml 2020. Tencent Angel-ML. https://angelml.ai/ [28] A.Krizhevsky. 2014. One weird trick for parallelizing convolutional
[10] AzureML 2020. Azure: Build, train, and deploy models from the cloud neura'l networks. arXiv:1404.5997 [CSNF] '
to the edge. https://azure.microsoft.com/en-us/services/machine- [29] A.Krizhevsky, I. Sutskever, and G.E. Hinton. 2012. ImageNet Classi-
learning/ fication with Deep Convolutional Neural Networks. In Advances in
[11] J. Baer and S. Ngahane. 2019. The Winding Road to Bet- Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges,
ter Machine Learning Infrastructure Through Tensorflow Ex- L. Bottou, and K. Q. Weinberger (Eds.). Curran Associates, Inc., 1097~
tended and Kubeflow. Retrieved November 21. 2020 from 1105. http://papers.nips.cc/paper/4824-imagenet-classification-with-
https://engineering.atspotify.com/2019/12/13/the-winding-road- deep-convolutional-neural-networks.pdf
to-better-machine-learning-infrastructure-through-tensorflow- (30] Y. LeCun, C. Cortes, and C. Burges. 2010. MNIST hand-
extended-and-kubeflow/ written digit database. ATT Labs [Online]. Available:

[12] Beam 2020. Apache Beam. https://beam.apache.org/ http://yann.lecun.com/exdb/mnist 2 (2010).

—
w DN
=

—_ ——
(= NS, BN
—

[13] E.Brumbaugh, A. Kale, A. Luque, B. Nooraei, J. Park, K. Puttaswamy, [31] Metaflow 2020. Netflix metaflow. https://github.com/Netflix/
K.H. Schiller, E. Shapiro, C. Shi, AN. Siegel, N. Simha, M. Bhushan, M. metaflow
Sbrocca, S.J. Yao, P. Yoon, V. Zanoyan, X. Zeng, Q. Zhu, A. Cheong [32] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,

M.G.-Q. Du, J. Feng, N. Handel, A.K. Hoh, J. Hone, and B. Hunter.
2019. Bighead: A Framework-Agnostic, End-to-End Machine Learning
Platform. 2019 IEEE International Conference on Data Science and
Advanced Analytics (DSAA) (2019), 551-560.

Richard Liaw, Eric Liang, William Paul, Michael L Jordan, and Ion
Stoica. 2017. Ray: A Distributed Framework for Emerging Al Ap-
plications. CoRR abs/1712.05889 (2017). arXiv:1712.05889 http:
//arxiv.org/abs/1712.05889

[33] S.Ngahane and D. Goodsell. 2018. Productionizing ML with workflows
at Twitter. Retrieved November 21, 2020 from https://blog.twitter.com/
engineering/en_us/topics/insights/2018/ml-workflows.html

[14] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang. 2015. MXNet: A Flexible and Efficient
Machine Learning Library for Heterogeneous Distributed Systems.
CoRR abs/1512.01274 (2015). http://dblp.uni-trier.de/db/journals/corr/ [34] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
corr1512.html#ChenLLLWWXXZZ15 Killeen, Z. Lin, N. Gimelshei, L. Antiga, A. Desmaison, A. Kopf, E.

[15] Cloudera 2020. Cloudera data science workbench: Self-service data Yang, Z. DeV.ito> M. Rais.on, A. Tejani, S. Chilamkurthy, B: Steiner,
science for the enterprise. https://www.cloudera.com/products/data- L. Fang, J. Bai, and S. Chintala. 2019. PyTorch: An Imperative Style,
science-and-engineering/data-science-workbench.html/ High-Performance Deep Learning Library. In Advances in Neural Infor-

[16] D. Aronchick and J. Lewi. 2017. Introducing kubeflow - a composable, mat'ion P r}ocessing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,
portable, scalable ml stack built for kubernetes. https://kubernetes. F: d'Alché-Buc, E. Fox, and R. Garnett ('Eds')’ VOI: 32. Curran Asso-
io/blog/2017/12/introducing- kubeflow-composable/ ciates, Inc., 8026-8037. https://proceedings.neurips.cc/paper/2019/

[17] D. Baylor, E. Breck, H.-t. Cheng, N. Fiedel, C. Yu FOO, 7Z. Haque, flIe/bdbca288fee7f92f2bfa9f7012727740—Paperpdf
S. Haykal, M. Ispir, V. Jain, L. Koc, C. Yuen Koo, L. Lew, C. [35] Sagemaker 2020. Amazon sagemaker: Machine learning for every
Mewald, A. Naresh Modi, N. Polyzotis, S. Ramesh, S. Roy, S. Eui- developer and data scientist. https://aws.amazon.com/sagemaker/
jong Whang, M. Wicke, J. Wilkiewicz, X. Zhang, and M. Zinkevich. [36] D. Sculley, G.Holt, D.Golovin, E.vydov, T.Phillips, D.Ebner,
2017. TFX: A TensorFlow-Based Production-Scale Machine Learn- V.Chaudhary, MYoung, J.-F. Crespo, and D. Dennison. 2015.
ing Platform. , 1387-1395 pages. _http://www.oreilly.com/webops- Hidden technical debt in machine learning systems. In Advances in
perf/free/kubernetes.csp neural information processing systems. 2503-2511.

[18] Determined 2020. Determined-Al Determined. https://determined.ai/ [37] Valohai 2020. Valohai MLOps platform. https://valohai.com/'

[19] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. 2018. BERT: Pre- [38] VertexAl 2021. Vertex Al https://cloud.google.com/vertex-ai
training of Deep Bidirectional Transformers for Language Understand- (39] M. Zahariai. 2018. Introducing mlflow: an open source machine learn-
ing. arXiv preprint arXiv:1810.04805 (2018). ing platform. https://databricks.com/blog/2018/06/05/introducing-

[20] J. Dunn. 2016. Introducing fblearner flow: Facebook’s ai back- mlflow'—an—open—sourc'e—machine—Iearnihg—platformihtml
bone. https://code.fb.com/core-data/introducing-fblearner-flow- (40] Zeppelin 2020. Zeppelin. https://zeppelin.apache.org/

facebook-s-aibackbone/

https://issues.apache.org/jira/browse/YARN-8821
https://issues.apache.org/jira/browse/YARN-8821
https://github.com/azkaban/azkaban
https://docs.docker.com/engine/reference/commandline/swarm/
https://docs.docker.com/engine/reference/commandline/swarm/
https://github.com/etcd-io/etcd
https://github.com/microsoft/nni
https://airflow.apache.org/
https://github.com/AliyunContainerService/gpushare-scheduler-extender
https://github.com/AliyunContainerService/gpushare-scheduler-extender
https://angelml.ai/
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning/
https://engineering.atspotify.com/2019/12/13/the-winding-road-to-better-machine-learning-infrastructure-through-tensorflow-extended-and-kubeflow/
https://engineering.atspotify.com/2019/12/13/the-winding-road-to-better-machine-learning-infrastructure-through-tensorflow-extended-and-kubeflow/
https://engineering.atspotify.com/2019/12/13/the-winding-road-to-better-machine-learning-infrastructure-through-tensorflow-extended-and-kubeflow/
https://beam.apache.org/
http://dblp.uni-trier.de/db/journals/corr/corr1512.html#ChenLLLWWXXZZ15
http://dblp.uni-trier.de/db/journals/corr/corr1512.html#ChenLLLWWXXZZ15
https://www.cloudera.com/products/data-science-and-engineering/data-science-workbench.html/
https://www.cloudera.com/products/data-science-and-engineering/data-science-workbench.html/
https://kubernetes.io/blog/2017/12/introducing-kubeflow-composable/
https://kubernetes.io/blog/2017/12/introducing-kubeflow-composable/
http://www.oreilly.com/webops-perf/free/kubernetes.csp
http://www.oreilly.com/webops-perf/free/kubernetes.csp
https://determined.ai/
https://code.fb.com/core-data/introducing-fblearner-flow-facebook-s-aibackbone/
https://code.fb.com/core-data/introducing-fblearner-flow-facebook-s-aibackbone/
https://eng.uber.com/michelangelo
https://arxiv.org/abs/1904.01631
https://blogs.gartner.com/carlie-idoine/2018/05/13/citizen-data-scientists-and-why-they-matter/
https://blogs.gartner.com/carlie-idoine/2018/05/13/citizen-data-scientists-and-why-they-matter/
https://jupyter.org/
https://events19.lfasiallc.com/events/kubecon-cloudnativecon-china-2019/schedule-english/
https://events19.lfasiallc.com/events/kubecon-cloudnativecon-china-2019/schedule-english/
https://arxiv.org/abs/1404.5997
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://github.com/Netflix/metaflow
https://github.com/Netflix/metaflow
https://arxiv.org/abs/1712.05889
http://arxiv.org/abs/1712.05889
http://arxiv.org/abs/1712.05889
https://blog.twitter.com/engineering/en_us/topics/insights/2018/ml-workflows.html
https://blog.twitter.com/engineering/en_us/topics/insights/2018/ml-workflows.html
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://aws.amazon.com/sagemaker/
https://valohai.com/
https://cloud.google.com/vertex-ai
https://databricks.com/blog/2018/06/05/introducing-mlflow-an-open-source-machine-learning-platform.html
https://databricks.com/blog/2018/06/05/introducing-mlflow-an-open-source-machine-learning-platform.html
https://zeppelin.apache.org/

	Abstract
	1 Introduction
	2 Related work
	3 Architecture
	3.1 Submarine user interface
	3.2 Submarine server
	3.3 Container orchestration framework

	4 Discussions
	4.1 Comparing Kubernetes and YARN
	4.2 Supporting multiple machine-learning frameworks
	4.3 High-level training SDK and Predefined Template Service
	4.4 End-to-end platform
	4.5 Learning curve

	5 Use cases
	5.1 Ke.com
	5.2 LinkedIn

	6 Future work
	7 Conclusions
	Acknowledgments
	References

